Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Glob Infect Dis ; 14(1): 24-30, 2022.
Article in English | MEDLINE | ID: covidwho-1760987

ABSTRACT

Introduction: The emergence of a novel coronavirus in China has turned into a SARS-CoV-2 pandemic with high fatality. As vaccines are developed through various strategies, their immunogenic potential may drastically vary and thus pose several challenges in offering immune responses against the virus. Methods: In this study, we adopted an immunoinformatics-aided approach for developing a new multi-epitope vaccine construct (MEVC). In silico approach was taken for the identification of B-cell and T-cell epitopes in the Spike protein, for MEVC various cytotoxic T-lymphocyte, helper T-lymphocyte, and B-cell epitopes with the highest affinity for the respective HLA alleles were assembled and joined by linkers. Results: The computational data suggest that the MEVC is nontoxic, nonallergenic and thermostable and elicit both humoral and cell-mediated immune responses. Subsequently, the biological activity of MEVC was assessed by bioinformatic tools using the interaction between the vaccine candidate and the innate immune system receptors TLR3 and TLR4. The epitopes of the construct were analyzed with that of the strains belonging to various clades including the emerging variants having multiple unique mutations in S protein. Conclusions: Due to the advantageous features, the MEVC can be tested in vitro for more practical validation and the study offers immense scope for developing a potential vaccine candidate against SARS-CoV-2 in view of the public health emergency associated with COVID-19 disease caused by SARS-CoV-2.

2.
Journal of global infectious diseases ; 13(4):164-171, 2021.
Article in English | EuropePMC | ID: covidwho-1615381

ABSTRACT

Introduction: The COVID-19 pandemic is associated with high morbidity and mortality, with the emergence of numerous variants. The dynamics of SARS-CoV-2 with respect to clade distribution is uneven, unpredictable and fast changing. Methods: Retrieving the complete genomes of SARS-CoV-2 from India and subjecting them to analysis on phylogenetic clade diversity, Spike (S) protein mutations and their functional consequences such as immune escape features and impact on infectivity. Whole genome of SARS-CoV-2 isolates (n = 4,326) deposited from India during the period from January 2020 to December 2020 is retrieved from Global Initiative on Sharing All Influenza Data (GISAID) and various analyses performed using in silico tools. Results: Notable clade dynamicity is observed indicating the emergence of diverse SARS-CoV-2 variants across the country. GR clade is predominant over the other clades and the distribution pattern of clades is uneven. D614G is the commonest and predominant mutation found among the S-protein followed by L54F. Mutation score prediction analyses reveal that there are several mutations in S-protein including the RBD and NTD regions that can influence the virulence of virus. Besides, mutations having immune escape features as well as impacting the immunogenicity and virulence through changes in the glycosylation patterns are identified. Conclusions: The study has revealed emergence of variants with shifting of clade dynamics within a year in India. It is shown uneven distribution of clades across the nation requiring timely deposition of SARS-CoV-2 sequences. Functional evaluation of mutations in S-protein reveals their significance in virulence, immune escape features and disease severity besides impacting therapeutics and prophylaxis.

SELECTION OF CITATIONS
SEARCH DETAIL